If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+30x-729=0
a = 6; b = 30; c = -729;
Δ = b2-4ac
Δ = 302-4·6·(-729)
Δ = 18396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18396}=\sqrt{36*511}=\sqrt{36}*\sqrt{511}=6\sqrt{511}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{511}}{2*6}=\frac{-30-6\sqrt{511}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{511}}{2*6}=\frac{-30+6\sqrt{511}}{12} $
| 250+50n=1750 | | $2.50+50n=17.50 | | -9=3y-3 | | 4b−15−4b=24 | | x/7x+5=16x | | 3v-2=-2 | | 7=3+4v | | 29x-60/2=10(2x+4 | | X(n-6)=42 | | 1/4=5/20=x | | (125-38)/3=x | | (4c+2)+(2c-7)=90 | | 4c+2+2c-7=90 | | (3x)+x=180 | | x/5+18=32 | | 4x-10=7x-100 | | 3x-5=265 | | (3x)+(80x)=90 | | 5r=48 | | w-60=90 | | 3-b/5=1 | | 0.5x+9-0.25x=-(x+9)-8 | | 76=15+x/7 | | 9e+15=144 | | 54/12=x/16 | | (0,4x-4)=(0,2x-3)(0,8x-27 | | 250+x=385 | | 6x-8=5x+14 | | 0,4x-4=0,2x-30,8x-27 | | 9x-25=8x-6 | | 5p+7-5p=-7(p+3) | | 7(x=1)-1=34 |